Powered By Blogger

WELCOME TO MY INFINITE BLOGGER

MUSIC AND ART

Sabtu, 19 September 2009

'Bio Battery Gula' Menghasilkan Listrik

'Bio Battery Gula' Menghasilkan Listrik

Baru-baru ini Sony mengumumkan pengembangan ‘bio battery’ yang menghasilkan listrik dari karbohidrat (gula) dengan menggunakan enzim sebagai katalis dengan memakai prinsip pembentukan energi pada makhluk hidup.

Sel uji dari ‘bio battery gula’ ini telah dapat mengeluarkan daya 50 mW, tingkat tertinggi yang dapat dicapai ‘bio battery’ pasif yang ada sampai sekarang. Output sel uji tersebut mampu menjalankan walkman untuk satu daftar lagu normal.
Untuk mewujudkan output daya tertinggi didunia, Sony mengembangkan sistem pemecahan gula untuk menghasilkan listrik yang melibatkan imobilisasi enzim secara efisien dan sebuah mediator ( bahan konduksi listrik) serta mempertahankan aktivitas enzim pada anoda. Sony juga mengembangkan struktur katoda baru yang menyuplai oksigen ke elektroda secara efisien dan memastikan jumlah air yang cukup tetap tersedia. Pengoptimalan elektrolit untuk dua teknologi ini memungkinkan tercapainya tingkat daya yang diinginkan.

Gula umumnya menjadi sumber energi tumbuhan yang dihasilkan melalui proses fotosintesis. Karena itu dapat diperbarui dan mudah ditemui di sebagian besar wilayah dunia, menunjukkan besarnya potensi ‘bio battery’ sebagai alat penghasil energi yang ramah lingkungan di masa depan. Dan penelitian ini telah disetujui sebagai paper akademis pada Pertemuan Nasional Masyarakat Kimia Amerika ke 234 di Boston.


Mekanisme ‘bio battery’

‘Bio battery’ gula ini memiliki anoda yang terdiri dari enzim pengolah gula dan mediator, dan katoda yang terdiri dari mediator dan enzim pengurang oksigen serta pemisah selofan di kedua sisi. Anode menghasilkan elektron dan hidrogen dari glukosa melalui proses berikut:



Ion hidrogen dari proses ini akan bergerak ke katoda melalui separator. Kemudian ketika sampai di katoda, ion hidrogen dan elektron akan menyerap oksigen dari udara untuk menghasilkan air:






Pencapaian penting penelitian dan pengembangan ‘bio battery’

Melalui reaksi elektrokimia ini elektron akan melewati sirkuit luar untuk menghasilkan listrik.

Untuk pengembangan ‘bio battery’ ini ada hal-hal penting yang harus diperhatikan, yaitu:

Adanya teknologi untuk meningkatkan imobilisasi enzim dan mediator pada elektroda.
Agar penggunaan efektif glukosa terjadi, anoda harus memiliki mediator dan enzim konsentrasi tinggi dengan aktivitas yang tetap. Teknologi ini memakai dua polimer untuk merangkai komponen ke anoda. Tiap polimer bermuatan berlawanan sehingga interaksi elektrostatis antar dua polimer mengamankan enzim dan mediator. Kesetimbangan ionik dan dan imobilisasi telah dioptimalkan untuk pengekstrakan elektron dari glukosa secara efisien.

Struktur katoda untuk penyerapan oksigen yang efisien.
Air dalam katoda penting untuk menjamin kondisi optimal untuk reduksi oksigen secara efisien. ‘Bio battery’ memakai elektroda karbon berporos yang memuat enzim terimobilisasi dan mediator yang dipartisi menggunakan pemisah selofan. Optimisasi struktur elektroda dan proses pemeliharaan tingkat air yang sesuai dapat meningkatkan reaktivitas katoda.

Optimisasi elektrolit untuk memenuhi struktur sel ‘bio battery’
Penyangga fosfat 0.1 M biasanya dipakai pada penelitian enzim, tapi penyangga dengan konsentrasi tinggi 1.0 M digunakan pada ‘bio battery’. Ini berdasarkan penelitian bahwa tingkat konsentrasi tinggi sangat efektif untuk menjaga aktivitas enzim dalam elektroda.

Sel uji dengan daya output tinggi dan ukuran yang diinginkan.
Sel uji dengan daya tinggi dan ukuran ‘bio baterry’ yang sesuai telah diproduksi dengan pemanfaatan teknologi ini. ‘Bio battery’ ini tidak memerlukan penyampuran, atau konveksi larutan glukosa atau udara; sebagai baterai pasif, cara kerjanya hanya menyuplai larutan gula ke unit baterai. Sel kubik menghasilkan 50 mW yang merupakan daya output terbesar diantara baterai tipe pasif dengan ukuran sekitar 39 mm setiap rusuknya. Dengan merangkai 4 sel kubik mampu untuk menyalakan walkman dan sepasang speaker. Tempat ‘bio battery’ gula ini terbuat dari plastik berbahan tumbuhan dan didesain dengan citra sel biologi.


Selain itu Sony juga akan terus mengembangkan sistem imobilisasi, komposisi elektroda dan teknologi lain untuk meningkatkan daya output dan ketahanannya, dengan tujuan aplikasi praktis ‘bio battery’ dimasa depan.



Sumber: Sony

Benda Hitam Memiliki Waktu Hidup yang Lama

Benda Hitam Memiliki Waktu Hidup yang Lama


Penelitian baru dari Niels Bohr Institute memberi informasi baru yang menambah satu bagian pengetahuan mengenai misteri gelap di angkasa yaitu benda hitam. Penelitian ini dipublikasikan pada jurnal sains Physical Review Letters.

Jagad raya tidak hanya terdiri dari benda langit yang terlihat seperti bintang, planet dan galaksi tapi juga memiliki hal misterius seperti benda hitam. Astronom telah dapat mengukur bahwa benda hitam mempunyai jumlah besar namun tidak ada yang tahu karena tak pernah terlihat. Benda ini tidak memancarkan atau memantulkan cahaya, tidak terlihat, dan merupakan sebuah misteri sehingga para peneliti memiliki banyak teori.

Benda hitam telah membuat pusing peneliti sejak terdeteksi pada dekade 1970-an, dan menyebabkan penelitian intensif pada fenomena tersebut. Benda ini tak terlihat tapi memiliki massa sehingga gaya gravitasinya dapat diukur. Dengan menganalisa galaksi, dapat diukur berat benda hitam yang ternyata merupakan benda dengan massa kolektif terbesar di galaksi.

Seperti bintang yang banyak terdapat di galaksi. Galaksi juga berkelompok bahkan jumlahnya dapat mencapai ribuan. Peneliti fisika astronomi Signe Riemer-Sørensen, PhD dari Niels Bohr Institute, telah menganalisa dua kelompok galaksi yang bertabrakan.

Kelompok galaksi yang bertabrakan dianalisa

Ketika dua kelompok galaksi bertemu baik galaksi maupun benda hitam sebenarnya tidak bertabrakan. Tetapi sekitar 12 persen massa kelompok galaksi adalah awan besar dari gas dan debu . Nah awan inilah yang bertabrakan. Awan gas ini panas dan mengeluarkan sinar-x yang dapat diamati, sehingga dapat dilihat proses pendorongan keluar awan dari kelompok galaksi ketika bertabrakan. Ketika awan bertabrakan awan itu semakin panas dan mengeluarkan sinar-x lebih banyak sehingga menghasilkan gas.

Pengamatan menunjukkan bahwa benda hitam mungkin adalah jenis partikel baru yang belum terdeteksi. Beberapa dugaan mengatakan benda hitam merupakan partikel yang memancarkan sinar-x ketika meluruh. Salah satunya adalah axions, yaitu partikel yang dalam teorinya memiliki dimensi ekstra. Jadi untuk melihat sinar-x benda gelap, peneliti mencari lokasi dimana terdapat konsentrasi benda hitam tinggi tetapi tidak ada gas. Kondisi ini dipenuhi pada dua kelompok galaksi yang bertabrakan dimana awan gasnya telah didorong keluar.

Signe Riemer-Sørensen telah menganalisa satu kelompok galaksi yang bertabrakan. Analisa menunjukkan bahwa kelompok tersebut sangat berat dan memiliki banyak galaksi. Pengukuran gravitasi menunjukkan terdapat benda hitam sekitar 85 persen dari massa kolektifnya, namun tidak ada sinar-x apapun yang terukur.

Ketika benda hitam tidak memancarkan sinar-x secara signifikan maka mungkin untuk menghitung batas atas kecepatan peluruhan dan waktu hidup partikel. Hasilnya jika axion adalah benda hitam maka waktu hidupnya melebihi 3.000.000 milyar tahun. Jika dugaan ini benar maka hanya sedikit benda hitam yang meluruh jika ia terbentuk 13.7 milyar tahun lalu. Kesimpulannya adalah benda hitam memiliki waktu hidup yang sangat sangat sangat lama.



Sumber: University of Copenhagen